If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-60x+17=0
a = 36; b = -60; c = +17;
Δ = b2-4ac
Δ = -602-4·36·17
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-24\sqrt{2}}{2*36}=\frac{60-24\sqrt{2}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+24\sqrt{2}}{2*36}=\frac{60+24\sqrt{2}}{72} $
| 6(-2x+5=-18 | | 2x-4=2(x-18) | | 3(x-4)+1=3x-6 | | 4|5x+1|=24 | | 4x(x+3)=40 | | 3^2x-7=27 | | -8-(2+7n)=6n+34 | | x/51=9/17 | | 2(7x+4)=4(2x+8) | | 56x+4×^2=320 | | X-4y=-4;=-2,4,6 | | (2x+15)+2x=90 | | 90-5y=105 | | 7+2x=6x-14 | | 9-3(5x+4)=3+3(x+4) | | -4x=39-29 | | 2x=1(1/2) | | 4(x+3)=2(2x+5) | | 3a+14=4 | | 8a+18=6 | | 4a+8=2 | | 5^x-2=6^x+4 | | 8a+16=4 | | 6a+18=8 | | 4x-5=2(2x+1 | | (x)(x+1)(x+2)=12144 | | 2(3x-6)=5x-3 | | 4a+8=9 | | 3x+x-25=200 | | 4b+12=2 | | 9√x–7=56 | | 4a+6=12 |